Thermal Protection System and Trajectory Optimization for Orbital Plane Change Aeroassisted Maneuver
نویسنده
چکیده
ABSTRACT: The aim of this paper was to identify, for a specific maneuver, the optimal combination between the trajectory and the associated heat shield configuration, namely the locations and thicknesses of the ablative and reusable zones, that maximize the allowable payload mass for a spacecraft. The analysis is conducted by considering the coupling between the trajectory’s dynamics and the heat shield’s thermal behavior while using a highly representative model of the heat shield. A global optimization procedure and original software were developed and implemented. The analyzed mission considers an aeroassisted transfer from two low Earth orbits with an assigned orbital plane change maneuver for a given delta wing vehicle equipped with a heat shield consisting of both ablative and reusable materials. The results indicate that the aeroassisted maneuver is more convenient than a “full propulsive” maneuver in the analyzed case, even considering the increased vehicle mass due to the presence of the heat shield.
منابع مشابه
OPTIMAL AEROASSISTED RETURN FROM HIGH EARTH ORBIT WITH PLANE CHANGEr
Abstract--This paper gives a complete analysis of the problem of aeroassisted return from a high Earth orbit to a low Earth orbit with plane change. A discussion of pure propulsive maneuver leads to the necessary change for improvement of the fuel consumption by inserting in the middle of the trajectory an atmospheric phase to obtain all or part of the required plane change. The variational pro...
متن کاملLane Change Trajectory Model Considering the Driver Effects Based on MANFIS
The lane change maneuver is among the most popular driving behaviors. It is also the basic element of important maneuvers like overtaking maneuver. Therefore, it is chosen as the focus of this study and novel multi-input multi-output adaptive neuro-fuzzy inference system models (MANFIS) are proposed for this behavior. These models are able to simulate and predict the future behavior of a Dri...
متن کاملMultidisciplinary Design Optimization of a Deorbit Maneuver Considering Propulsion, TPS, and Trajectory
Unguided reentry capsules are usually involved in ballistic entry. The final states (such as altitude and velocity of parachute activity) depend on initials parameters. Reentry trajectory parameters differently affect the thermal protection system (TPS), required deorbit propellant, and structural load. The purpose of this paper is to optimal design of deorbit parameters to minimize the thermal...
متن کاملOptimal Multiple-pass Aeroassisted Plane Change
A~traet--This paper presents the exact dimensionless equations of motion and the necessary conditions for the computation of the optimal trajectories of a hypervelocity vehicle flying through a non-rotating spherical planetary atmosphere. Numerical solution is then presented for the case when the vehicle makes several passages through the atmosphere near the perigee of its orbit. While the orbi...
متن کاملHigh-performance three-dimensional maneuvers control in the area of spacecraft
Contemporary research is improving techniques to maneuvers control in the area of spacecraft. In the aspect of further development of investigations, a high-performance strategy of maneuvers control is proposed in the present research to be applicable to deal with a class of the aforementioned spacecrafts. In a word, the main subject behind the research is to realize a high-performance three-di...
متن کامل